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Abstract: Time-of-flight (TOF) based underwater imaging is of great importance in practical
applications due to its high image quality. Existing works separate scattered and ballistic photons
in the time and space domains to recover objects in weakly scattered underwater scenes. However,
in turbid underwater environments, absorption and strong anisotropic scattering cause weak
ballistic light tightly coupled with forward-scattered and backward-scattered photons. The
difficulty in isolating scattered light significantly limits the imaging capabilities of the existing
methods. To tackle the problem, a forward-backward-distinctive imaging model is proposed,
which models the spatial distribution of forward scattered illumination by point spread function
(PSF) of the turbid water while modeling the backward scattered field by diffusion equation
(DE) to describe the anisotropic scattering in the water accurately. Based on this, the underwater
boundary migration model (WBMM) is derived, an explicit mapping relationship between the
scene and the measurements is established, and a reconstruction algorithm utilizing time-of-flight
information in the turbid water is realized. Experiments on a real scattering imaging system
are conducted to demonstrate the effectiveness of the proposed method. Experimental results
show that the proposed method outperforms the existing methods in terms of reconstruction
accuracy and imaging limit subjectively and objectively. Even though the signal photons are
highly scattered in turbid water, and the spatial distribution of the reflected light are greatly
changed, the proposed method can reconstruct an object with a one-way scattering length of 9.5
mean transmission free-range (TMFPs), corresponding to a round-trip scattering length of 19
TMFPs, which is very favorable for dealing with underwater scattering imaging problems.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Underwater optical imaging is gaining increasing attention in underwater archaeology, biological
research, and engineering inspection due to its high resolution and high accuracy. However,
optical imaging encounters substantial challenges owing to the strong absorption and scattering
effects in turbid water. The strong absorption greatly reduces the energy of light that reaches and
is reflected by the target. Scattering particles cause the illuminating light and the reflected light
to be reflected and deflected multiple times along the propagation path, generating high-intensity
scattering noise and thereby degrading the imaging quality. Meanwhile, turbid water exhibits
pronounced anisotropic scattering properties [1], causing light to change direction multiple times
at slight angles during propagation [2,3,4]. This leads to a drastic disruption of the original
spatial light distribution, as even a highly collimated beam disperses into a diffuse light cloud as
it propagates forward [4]. Therefore, addressing the imaging challenges posed by scattering in
turbid water remains a critical and meaningful research endeavor.

According to the input data type, underwater scattering imaging techniques can be categorized
into 2D image based methods and time-of-flight(TOF) based methods. The 2D image-based
methods [5,6,7,8] achieve visual enhancement by correlating scattering with color channels.
However, these methods are strictly limited by environmental factors, as stronger scattering and
suboptimal lighting conditions can significantly degrade the quality of the enhanced images.
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Therefore, to achieve underwater imaging in complex strong scattering environments, three-
dimensional spatiotemporal measurements, including time-of-flight information, are introduced.
In turbid water, the presence of strong forward- and backward-scattered photons creates significant
imaging challenges. Existing TOF-based underwater imaging methods address these challenges
by isolating scattered photons or extracting ballistic photons to reconstruct targets. At the
hardware level, backward-scattered photons are isolated by setting reasonable time gating [9,10]
and adjusting the relative positions of the illuminator and receiver [11], while forward-scattered
photons are isolated by narrowing the field of view (FOV) of the detector [12,13,14]. At the
algorithmic level, researchers employ techniques such as cross-correlation, spatial filtering, and
statistical modeling to achieve scattering resistance. Pixel-wise cross-correlation [12,13,14,15,16]
leverages the temporal-domain response of the detector as a prior, extracting ballistic light to
compute the target’s albedo and depth. Spatial filtering methods smooth the intensity map of the
measurements using techniques like median filtering [15] and mode filtering [17], attenuating
noise stemming from forward and backward scattering. Statistical modeling methods [10,18,19]
formulate maximum likelihood problems in the temporal domain or across multiple pixels to
address the sparsity of ballistic light caused by scattering. All these methods that separate
ballistic light from scattered light can mitigate interference from scattering noise and enhance
signal-to-noise ratio. However, in the turbid water with strong scattering, ballistic photons are
extremely attenuated and easily overwhelmed by scattered photons. As a result, ballistic and
scattered photons don’t have distinguishable characteristics in both temporal and spatial domains,
leading to the failure of these methods. Additionally, incorporating polarization states into TOF
measurements [9,20,21] can achieve ballistic light separation, but this addition, while providing
more information, significantly increases the complexity of measurements and algorithms.

Notably, imaging methods that employ scattering propagation modeling demonstrate superior
performance in strong scattering environments. Lindell [22] demonstrated a three-stage propa-
gation model for scattering imaging, which includes two segments of transmission through the
scattering medium and one segment of free-space propagation, enabling clear reconstruction of
objects behind a thick scattering layer. Du [23,24] employed the diffusion equation to model
photon propagation in a volume-scattering medium and reconstructed objects encased in foam by
solving an inverse problem with an attenuation limit of 24 TMFPs. However, these methods rely
on ideal isotropic media models, which cannot accurately depict the propagation dynamics of
strong anisotropic scattering in turbid water, nor effectively handle the intense forward scattered
light produced by such conditions.

To address this problem, in this paper, we propose a time-of-flight-based method for underwater
scattering imaging. Unlike existing underwater scattering imaging methods, the proposed method
models the underwater scattering propagation process. In this case, a forward-backward-
distinctive imaging model is proposed, which uses the point spread function to model the
spatial distribution of forward-scattered illumination in turbid water and the diffusion equation
to accurately describe the anisotropic scattering of the backward-scattered field. To mitigate
scattering effects in turbid water, the underwater boundary migration model is derived to establish
an explicit mapping relationship between the scene and the measurements, thereby enabling the
development of a reconstruction algorithm that utilizes time-of-flight information by solving the
inverse problem. Experiments on a real scattering imaging system are conducted to demonstrate
the effectiveness of the proposed method. The experimental results show that the proposed method
outperforms existing methods in both subjective quality assessment and objective evaluation
metrics, including peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM).
Using our imaging system, the proposed method can reconstruct object with a one-way scattering
length of 9.5 TMFPs, corresponding to a round-trip scattering length of 19 TMFPs.
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2. Method

The method proposed in this paper is based on the confocal volumetric scattering imaging system,
as depicted in Fig. 1. This system utilizes a pulsed laser for illumination, as shown in Fig. 1(a),
and an ultrafast detector for detection, as shown in Fig. 1(b). Both the laser and detector share
the same optical path, facilitated by a beam splitter that separates the light paths. The system
scans the underwater scene pixel by pixel, capturing the time-domain response of each pixel with
the detector to form a 3D spatio-temporal measurement containing time-of-flight information.

Fig. 1. Schematic diagram for Underwater TOF-based imaging. (a)The forward path in the
imaging process. (b)The backward path in the imaging process.

To reconstruct objects in turbid water, we propose a forward-backward-distinctive imaging
model that accurately models the imaging process, as detailed in Section 2.1. Next, a boundary
migration model for the scattering imaging process is derived, providing an analytical mapping
relationship between the scene and the measurements, as described in Section 2.2. Finally, the
target is reconstructed by solving the inverse problem of the boundary migration model, as
detailed in Section 2.3.

2.1. Underwater forward-backward-distinctive imaging model

The complete imaging process can be divided into two parts, the forward path shown in Fig. 1(a)
and the backward path shown in Fig. 1(b). As shown in Fig. 1(a), a pulsed laser emits high-energy
photons p⃗0 to illuminate the scene. These photons travel into the underwater environment
along a fixed direction, where they interact with the turbid water and form scattered photons
p⃗s. During each scattering event, the photons change their propagation direction, with the
scattering angle θ obeying the volume scattering function VSF(θ). Due to the high anisotropic
scattering properties of turbid water, the scattering angle θ is usually very small, causing multiple
small-angle scatterings and forward propagation in various directions. These changes in the
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propagation direction of scattered photons manifest macroscopically as changes in the intensity
distribution of the illuminated light field s(x, y, z, t), which can be modeled as:

s(x, y, z, t) = HF(s0(x, y, z, t)), (1)

where s0(x, y, z, t) represents the illumination light field distribution in free space, dependent solely
on the intrinsic parameters of the illuminator. The function HF(·) denotes the transfer function
for forward illumination propagation in turbid water. Assuming the scattering characteristics of
turbid water remain constant over time and exhibit spatial translation invariance, HF(·) can be
modeled as the point diffusion function Pw(x, y, z) of the turbid water. Thus, the transfer function
HF(·) can be expressed as the spatial convolution given as:

s(x, y, z, t) = HF(s0(x, y, z, t)) = pw(x, y, z) ∗ s0(x, y, z, t), (2)

where ∗ is the convolution operator applied per frame.
Significant research has focused on mathematically expressing the point diffusion function of

turbid water [25,26]. A notable contribution is the small-angle approximation theory proposed by
Wells [27], which assumes that single scattering in turbid water occurs at very small angles (less
than 0.1 degrees). Using this assumption, simplified RTE equations solve the frequency-domain
transfer function in turbid water. Based on Wells’ theory, Hou [28] introduced an approximate
form of the point diffusion function, providing high accuracy and a more explicit mathematical
expression, given as follows:

pw(x, y, z) = K(θ0)
ωµcl(x, y, z)e−µcl(x,y,z)

2πθ(x, y, z)(1−2µcl(x,y,z)θ0ω)/ω
, (3)

where, K(θ0) is a constant related to the mean scattering angle θ0, ω is the single scattering
albedo of the turbid water, and µc = µa + (1 − g)µs denotes the total attenuation coefficient. The
distance l(x, y, z) and the scattering angle θ(x, y, z) at position (x, y, z) relative to the reference
position (x0, y0, z0). The backward path depicted in Fig. 1(b) includes the interaction between the
forward light field and the scene, the reflected light then undergoes backward propagation and
is captured by the ultrafast detector. The TOF measurements recorded by the ultrafast detector
include both ballistic photons p⃗b, which travel without scattering, and scattered photons p⃗s that
have undergone multiple scattering events. These measurements can be modeled as:

Y (x, y, t) = H(O(x, y, z), s(x, y, z, t)) +W, (4)

where, Y(x, y, t) denotes the received time-of-flight measurement, O(x, y, z) represents the
bidirectional scattering distribution function (BRDF) of the objects in the scene, and H(·)

represents the backward scattering transfer function of the turbid water, which characterizes the
relationship between scene, illumination, and measurement. Additionally, W denotes additive
random measurement noise. Due to the complexity of the scene and scattering propagation process,
providing an explicit expression for the transfer function H(·) is often challenging. Therefore, the
time-resolved diffusion equation is employed to implicitly characterize the anisotropic scattering
propagation of the backward path, given as:

1
c
∂ϕ(x, y, z, t)

∂t
− ∇[D(x, y, z)∇ϕ(x, y, z, t)] + µa(x, y, z)ϕ(x, y, z, t)

= s(x, y, z, t) = pw(x, y, z) ∗ s0(x, y, z, t),
(5)

where ϕ(x, y, z, t) denotes the backward scattering field, c is the speed of light, and D(x, y, z) =
(3(µa + (1− g)µs))

−1 represents the diffusion coefficient, with µa as the absorption coefficient, µs
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as the scattering coefficient, and g as the mean cosine of the scattering angle. Here, we assume
that the scattering media is homogeneous, thus D is a constant.

For the backward scattering field, the object is treated as self-emissive, meaning the object
emits a wave at t = 0. Then, the spatial intensity distribution of the self-emissive scene, denoted
as I(x, y, z), can be described by the temporal boundary of the backward scattering field, denoted
as ϕ(x, y, z, t = 0). Given that the self-emissive field is primarily governed by the object, we
have I(x, y, z) ∝ O(x, y, z). Furthermore, we set the scanning surface at z = 0, allowing the
measurement Y(x, y, t) to be represented by the spatial boundary of the backward scattering field,
i.e., ϕ(x, y, z = 0, t). Under these conditions, the boundary conditions of the backward scattering
field can be expressed as follows:{︄

ϕ(x, y, z = 0, t) = Y(x, y, t)
ϕ(x, y, z, t = 0) = I(x, y, z)

, (6)

By combining Eqs. (5) and (6), a comprehensive model for imaging in turbid water is
established.

2.2. Underwater time-space boundary migration model

To solve the inverse problem of the forward-backward-distinctive imaging model described in
Section 2.1, it is essential to derive the analytical mapping relation from the temporal boundary
ϕ(x, y, z, t = 0) to the spatial boundary ϕ(x, y, z = 0, t) as follows:

ϕ(x, y, z = 0, t) = H(ϕ(x, y, z, t = 0)), (7)

To obtain the implicit function H(·) represented by Eq. (5), we first perform a spatial Fourier
transform (x, y, z, t) → (kx, ky, kz, t) on the Eq. (5), which yields a first-order linear differential
equation:

1
c
∂Φ(kx, ky, kz, t)

∂t
+
[︂
D
(︂
k2

x + k2
y + k2

z

)︂
+ µa

]︂
Φ(kx, ky, kz, t)

= Pw(kx, ky, kz) · S0(kx, ky, kz, t).
(8)

Solving this equation yields the general solution of Φ(kx, ky, kz, t), which has the following
form:

Φ(kx, ky, kz, t) = e−c[D(k2
x+k2

y+k2
z )+µa]t ·

[︄
C(kx, ky, kz)+∫

cPw(kx, ky, kz)S0(kx, ky, kz, t)ec[D(k2
x+k2

y+k2
z )+µa]tdt

]︄
.

(9)

C(kx, ky, kz) is an arbitrary function introduced by the homogeneous solution of Eq. (8).
Φ(kx, ky, kz, t), Pw(kx, ky, kz) and S0(kx, ky, kz, t) represent the Fourier transform of ϕ(x, y, z, t),
pw(x, y, z) and s0(x, y, z, t), respectively. Since Pw(kx, ky, ky) is independent of time, Eq. (9) can be
further reorganized as follows:

Φ(kx, ky, kz, t) = e−c[D(k2
x+k2

y+k2
z )+µa]t · Pw(kx, ky, kz)

·

[︃
C(kx, ky, kz) +

∫
cS0(kx, ky, kz, t)ec[D(k2

x+k2
y+k2

z )+µa]tdt
]︃

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
Φ′(kx,ky,kz)

, (10)

where Φ′(kx, ky, kz) is the spectrum of the temporal boundary ϕ(x, y, z, t = 0). To obtain the
spatial boundary, we perform the inverse Fourier transform on Eq. (10) and using the dispersion
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relation f = c
√︂

k2
x + k2

y + k2
z to map Φ′(kx, ky, kz) to Φ̄(kx, ky, f ), which is the same as the existing

methods [29,23]. After setting z = 0, the transformation from the temporal boundary to the
spatial boundary can be analytically expressed as:

ϕ(x, y, z = 0, t) = H(ϕ(x, y, z, t = 0))

= pw(x, y, z = 0) ∗ F−1
xy {

1
2π

∫
Gkz→f [Fxyz(ϕ(x, y, z, t = 0)] · e

−

(︃
D f 2

c +cµa

)︃
t
df },

(11)

where F−1
xy (·) and Fxyz(·) represent the two-dimensional Fourier inverse transform and the three-

dimensional Fourier transform, respectively, and Gkz→f [·] denotes the frequency-domain mapping
relation for (kx, ky, kz) → (kx, ky, f ).

2.3. Underwater boundary migration algorithm

As depicted in Fig. 2(a), the model for underwater boundary migration comprises five distinct
steps. To achieve target reconstruction in turbid water, the inverse of these steps need to
be sequentially implemented, illustrated in Fig. 2(b). The reconstruction algorithm involves
sequential divisions into frame-wise deconvolution, two-dimensional Fourier transform, inverse
of numerical integration, frequency domain interpolation, and three-dimensional inverse Fourier
transform. Firstly, for each time frame ϕ(x, y, 0, t = t1), a deconvolution operation is performed
using the 2D convolution kernel ψ from Eq. (3). In this process, the distance l(x, y, z) and spatial
scattering angle θ(x, y, z) are computed for each time frame based on the depth prior z1 = c′ · t1.
Based on this, the 2D spatial deconvolution for each time frame is solved using Wiener filtering:

ϕ′(x, y, z = 0, t = t1) = F−1
(︃

|F(ψ)|2

|F(ψ)|2 + 1/α
·

F(ϕ(x, y, z = 0, t = t1))
F(ψ)

)︃
, (12)

where F(·) and F−1(·) denote the Fourier transform and its inverse, respectively. α is a parameter
depended on the signal-to-noise ratio. To get Φ̄(kx, ky, f ), we first perform a Fourier transform
of ϕ′(x, y, z = 0, t) in the spatial domain (x, y) → (kx, ky). Then, following the integration in
Eq. (11), the transformation from t to f can be achieved. Specifically, this numerical transform
process can be discretized as Φ̄(f ) = H−1

i · ϕ′(t), where H−1
i is the inverse matrix of the temporal

transfer matrix Hi and has the following form:

H−1
i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
e
−

(︃
D

f 2
1
c +cµa

)︃
t1

· · · e
−

(︃
D

f 2
M
c +cµa

)︃
t1

...
. . .

...

e
−

(︃
D

f 2
1
c +cµa

)︃
tM

· · · e
−

(︃
D

f 2
M
c +cµa

)︃
tM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

M×M

. (13)

M is the number of time bins. In our experiments, the condition number of Hi is very large,
resulting in an ill-conditioned inverse problem. Therefore, we calculate the pseudo-inverse matrix
of Hi to complete this numerical transformation process. Next, the conversion from the (kx, ky, f )
domain to the (kx, ky, kz) domain is achieved through frequency domain interpolation, as follows:

Φ
′(kx, ky, kz) =

c|kz |√︂
k2

x + k2
y + k2

z

Φ̄

(︃
x, y, c

√︂
k2

x + k2
y + k2

z

)︃
. (14)

Finally, the temporal boundary is derived through the inverse Fourier transform (kx, ky, kz) →

(x, y, z), given as:
ϕ(x, y, z, t = 0) = F−1

xyz(Φ
′(kx, ky, kz)). (15)
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Fig. 2. The Flow Chart for the Underwater Boundary Migration Algorithm. (a)The flow
chart for the underwater boundary migration model. (b)The flow chart for the reconstruction
algorithm.

3. Experimental results and discussions

3.1. Experimental setup

To validate the effectiveness of the proposed method, we designed the experimental setup shown
in Fig. 3(a) and utilized a scanning confocal volumetric scattering imaging system depicted in
Fig. 3(b). In Fig. 3(a), a 0.5m × 0.5m water tank simulated a turbid underwater environment,
where the target object was fully immersed with Maalox as the scattering medium. The imaging
system, as illustrated in Fig. 3(b), captured time-of-flight information in this turbid environment.
The imaging system employed a high-power pulsed laser (INNO AMT-532-1W1M) operating at
a wavelength of 532 nm with a pulse width of 12ps, a repetition frequency of 20 MHz, and an
average optical power of 700 mW. After passing through a beam splitter (Thorlabs PBS251),
the laser light was directed onto the scene by a galvanometer (Thorlabs GVS012) for pixel-wise
scanning, controlled by a NI-DAQ USB-6343 data acquisition device. The reflected light followed
the same path, passing through a galvanometer and beam splitter before being focused by a lens
(focal length 2.8-12 mm, maximum f-value 1.6) onto a SPAD array (Photon Force PF32), acting
as an ultrafast detector. Each pixel of the SPAD array operated in time-correlated single-photon
counting (TCSPC) mode with a temporal resolution of 55ps. A time-delay unit (Micro Photon
Devices PSD-065-A-MOD) shaped the laser’s synchronization signal into a standard TTL trigger
signal for acquisition by the SPAD array. This setup enabled three-dimensional temporal-spaital
measurements, comprising two-dimensional spatial information (64 × 64) and one-dimensional
temporal information (250 time bins) derived from measurements at all scanning points.

3.2. Experimental results

As shown in Fig. 3(a), Maalox suspensions is used to simulate the turbid water. Previous
studies have shown that Maalox suspensions exhibit a volume scattering function similar to
natural water, with strong scattering and little absorption [4]. To simulate a highly scattering
underwater environment, we prepared Maalox suspensions at a concentration of 0.072%. Using
Beer-Lambert’s law, the attenuation coefficient is determined to be µc = 14.72m−1, giving an
average free transmission range of l∗ = 1/µc = 0.068m. This implies that the photon’s energy is
attenuated by 1/e on average for every distance l∗ traveled. Based on this, the attenuation length
over a distance r can be calculated as lc = r/l∗. The targets used include flat foam letters "T", "H",
and "C" with Lambertian surfaces, combinations of letters at different depths "TL" and "VT", and
three-dimensional mannequin with Lambertian surfaces. All targets were fixed with matte black
supports and immersed in a water tank. The imaging system conducts a 64 × 64 pixel-wise scan
over a 0.5m× 0.5m area. Prior to each experiment, the scanning range is adjusted according to the
objects’ depths to ensure comprehensive coverage and photon information to be captured. The
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Fig. 3. The experimental and the imaging system setup. (a)The experimental setup. (b)The
setup of the scanning confocal volume scattering system.

obtained measurement data were processed using time gating, pixel-wise cross-correlation [12],
BMM [23], and the algorithm proposed in this paper. The reference image was acquired using
the same imaging system without the scattering medium and then binarized. Reconstruction
results were evaluated both subjectively and with objective metrics including PSNR and SSIM.

The proposed algorithm uses 3D TOF measurement data as input and follows the process
outlined in Fig. 2(b). This includes frame-wise deconvolution, 2D Fourier transform, numerical
integration inverse, frequency domain interpolation, and 3D Fourier inverse transform, with
each step’s results provided. Notably, while spatial domain frame-wise deconvolution can
improve object visibility, it fails to reconstruct the object’s shape effectively. This is because
the PSF convolution model only accounts for the spatial distribution changes of the illumination
light field during forward propagation, which is just one part of the complete imaging model.
Reconstructing the object accurately requires solving the inverse problem of the entire imaging
model.

Figure 4. shows the reconstruction results for various planar and three-dimensional target
objects using time-gating, cross-correlation, BMM, and the proposed method. The time-gating
method fails to distinguish the target objects, showing only slight bright spots. This is because
ballistic photons in turbid water experience strong scattering and absorption, reducing their ratio
and blending them with background noise from backscattering, making it difficult to extract
ballistic photons from the time dimension alone. Pixel-wise cross-correlation improves contrast
by using the system’s time-domain response as a priori, but in strong scattering environments,
the target is still only represented as a brighter region, making shape recognition difficult due to
the sparsity of ballistic photons. The BMM algorithm, which models the propagation process
using the diffusion equation, achieves significantly higher contrast than time-gating and cross-
correlation. However, due to strong anisotropic scattering in water, forward-scattered photons
and ballistic photons are highly coupled in the time domain. Time-gating and cross-correlation
methods do not model scattering propagation, and the BMM algorithm does not account for
forward propagation scattering. Consequently, these methods often reconstruct forward-scattered
light artifacts as part of the object, resulting in blurred spatial morphology. In contrast, the
proposed algorithm comprehensively models both stages of the illumination-imaging process
in turbid water, effectively reconstructing objects with clear shapes and separating them from
background noise, outperforming the other methods significantly.

To objectively evaluate the effectiveness of the proposed method, we calculated the PSNR and
SSIM of all reconstruction results, as shown in Tables 1 and 2. The proposed method outperforms
the others in both metrics. Time-gating and cross-correlation are ineffective when ballistic and
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Fig. 4. Reconstruction results for different objects
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scattered light are highly coupled, while the BMM algorithm improves contrast but still suffers
from forward scattering noise, resulting in low PSNR of both these three methods. The proposed
algorithm models the scattering propagation process in turbid water, effectively removing both
forward and backward scattering noise, and achieving the highest PSNR in all experiments.
Additionally, time-gating, cross-correlation, and BMM do not model forward propagation, leading
to blurring from forward scattering and poor shape and structure discrimination of the target
object. The proposed algorithm eliminates this scattering noise, reconstructing clear target
objects with significantly higher structural similarity compared to other methods.

By varying the depth of the letter T from the measurement plane, we collected TOF measure-
ments at different TMFPs. Figure 5. shows the temporal response of a single scanning point
at different TMFPs. The system’s temporal response includes a peak from the object’s reflec-
tion containing both forward-scattered and ballistic photons, along with scattering noise from
backward scattering. As TMFPs increase, the absorption attenuation and forward scattering in
the turbid water also increase, resulting in a gradual decrease in the energy of photons from
the object and a broadening in the time domain. This results in both the energy intensities and
temporal distribution of signal photons and backscattered noise converging, posing a significant
challenge for imaging due to heightened coupling between scattered and ballistic photons.

Fig. 5. Comparison of Temporal Response under Different TMFPs

Table 1. Comparison in PSNR(dB) of Different Methods

Method T H C LT VL People Average

Time-gating 5.9209 5.6973 6.0563 5.8837 6.1409 6.1599 5.9765

Correlation 7.4990 7.9969 9.1343 9.1884 9.6846 9.9899 8.9155

BMM 8.5790 9.0666 9.1770 10.8271 11.3250 11.0110 9.9976

Proposed 12.5761 12.7456 13.3537 12.1662 13.6085 12.8884 12.8897

Table 2. Comparison in SSIM of Different Methods

Method T H C LT VL People Average

Time-gating 0.0812 0.1739 0.1090 0.1735 0.1211 0.2500 0.1514

Correlation 0.0478 0.2038 0.1297 0.1304 0.0867 0.3059 0.1507

BMM 0.1437 0.3191 0.2298 0.3603 0.3382 0.3556 0.2911

Proposed 0.5574 0.7015 0.6967 0.5208 0.5033 0.5255 0.5842

On this basis, we reconstructed the target object under different TMFPs using different methods,
and the reconstruction results are shown in Fig. 6. It can be seen that the number of reflected
photons from the object is significantly higher than backscattered photons at lower TMFPs, and
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the reconstruction results of different methods all have significantly higher contrast. However, due
to the close coupling of forward-scattered and ballistic photons, time-gating, cross-correlation,
and BMM are unable to deal with the artifacts formed by forward-scattered light, and there is
blurring in the reconstruction results. With the increasing distance of the object, the forward
scattering effect is increasing, while the signal photons from the object are gradually decreasing,
the reconstruction quality of time-gating, cross correlation, and BMM decreases significantly,
and the object starts to become invisible at 7.360 TMFPs. The proposed method, on the other
hand, can effectively deal with both forward-scattered and backward-scattered light during the
imaging process, and still maintains a clear reconstruction of the object with increasing TMFPs,
and remains effective at 9.568 TMFPs. Since the photon transmission process is a round-trip
optical path, the total optical path of traveled photons is approximately 19 TMFPs.

Fig. 6. Object reconstruction results with different TMFPs

To intuitively compare the reconstruction results of different methods under varying TMFPs,
we calculated the PSNR and SSIM for all outcomes, as shown in Tables 3 and 4. Due to backward
scattering and water absorption, the contrast of the reconstruction results using time-gating,
cross-correlation, and BMM methods significantly decreases, with PSNR dropping notably
as TMFPs increase. Additionally, forward scattering causes increasing blurring as scattering
increases, leading to severe morphological loss in the reconstructions from these methods, which
corresponds to a significant decrease in SSIM. In contrast, the proposed method consistently
reconstructs the target object clearly and effectively, even as underwater scattering increases. The
PSNR and SSIM remain optimal and stable, demonstrating the proposed method’s effectiveness.

Table 3. Comparison in PSNR(dB) of Different TMFPs

TMFPs 5.152 5.888 6.624 7.360 8.096 8.832 9.568 Average

Time-gating 10.4405 9.0137 8.0395 5.3151 5.9209 5.7270 4.8991 7.050

Correlation 9.9952 9.6187 8.8203 7.4421 7.4990 6.3146 5.2360 7.8465

BMM 12.2114 12.0835 10.4686 9.9813 8.5790 9.4508 8.5247 10.1856

Proposed 14.0964 13.5433 12.5370 13.1334 12.5761 12.9613 12.6500 13.0710
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Table 4. Comparison in SSIM of Different TMFPs

TMFPs 5.152 5.888 6.624 7.360 8.096 8.832 9.568 Average

Time-gating 0.4819 0.3835 0.2350 0.0773 0.0812 0.0655 0.0205 0.1921

Correlation 0.4478 0.3761 0.2680 0.1477 0.0478 0.0423 0.0371 0.1952

BMM 0.5097 0.4050 0.3052 0.2177 0.1437 0.1350 0.1187 0.2621

Proposed 0.6321 0.5695 0.4527 0.5792 0.5574 0.3913 0.5137 0.5279

4. Conclusion

In this paper, we present a novel forward-backward-distinctive imaging model to address the
limitations of existing TOF-based underwater imaging methods. By modeling the forward-
scattered illumination with a point spread function and the backward-scattered field with diffusion
equation, our approach effectively captures the anisotropic scattering characteristics of turbid
water and comprehensively models the scattering propagation process. The derived underwater
boundary migration model establishes a clear mapping between the scene and the measurements,
enabling a robust reconstruction algorithm that utilizes TOF information by solving the inverse
problem. We verified the effectiveness of the proposed method using a laboratory-simulated
turbid water environment and a real imaging system. Experimental results demonstrate that our
method significantly outperforms current methods, achieving superior visual quality, PSNR, and
SSIM. It successfully reconstructs objects with higher accuracy and greater imaging limits, even
at a one-way scattering length of 9.5 TMFPs (19 TMFPs round-trip), confirming the correctness
of the model and the effectiveness of the algorithm.
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